第一章 人工智能来了(第9/11页)

世界上第一个专家系统程序Dendral是一个成功地用人类专家知识和逻辑推理规则解决一个特定领域问题的例子。这是一个由斯坦福大学的研究者用Lisp语言写成的,帮助有机化学家根据物质光谱推断未知有机分子结构的程序。Dendral项目在20世纪60年代中期取得了令人瞩目的成功,衍生出一大批根据物质光谱推断物质结构的智能程序21。Dendral之所以能在限定的领域解决问题,一是依赖于化学家们积累的有关何种分子结构可能产生何种光谱的经验知识,二是依赖符合人类逻辑推理规律的大量判定规则。Dendral的成功事实上带动了专家系统在人工智能各相关领域的广泛应用,从机器翻译到语音识别,从军事决策到资源勘探。一时间,专家系统似乎就是人工智能的代名词,其热度不亚于今天的深度学习。

但人们很快就发现了基于人类知识库和逻辑学规则构建人工智能系统的局限。一个解决特定的、狭小领域问题的专家系统很难被扩展到稍微宽广一些的知识领域中,更别提扩展到基于世界知识的日常生活里了。一个著名的例子是早期人们用语法规则与词汇对照表来实现机器翻译时的窘境。1957年苏联发射世界上第一颗人造卫星后,美国政府和军方急于使用机器翻译系统了解苏联的科技动态。但用语法规则和词汇对照表实现的俄语到英语的机器翻译系统笑话百出,曾把“心有余而力不足”(the spirit is willing but the flesh is weak)翻译为“伏特加不错而肉都烂掉了”(the vodka is good but the meat is rotten),完全无法处理自然语言中的歧义和丰富多样的表达方式22。在后起的统计模型、深度学习等技术面前,专家系统毫无优势可言,因而从20世纪90年代开始就备受冷落。科研机构甚至不得不解雇过时的语言学家,以跟上技术发展的脚步。

另一方面,从心理学和生物学出发,科学家们试图弄清楚人的大脑到底是怎么工作的,并希望按照大脑的工作原理构建计算机程序,实现“真正”的人工智能。这条道路上同样布满荆棘。最跌宕起伏的例子,非神经网络莫属。

生物学家和心理学家很早就开始研究人类大脑的工作方式,其中最重要的一环,就是大脑神经元对信息(刺激)的处理和传播过程。早在通用电子计算机出现之前,科学家们就已经提出了有关神经元处理信息的假想模型,即人类大脑中的数量庞大的神经元共同组成一个相互协作的网络结构,信息(刺激)通过若干层神经元的增强、衰减或屏蔽处理后,作为系统的输出信号,控制人体对环境刺激的反应(动作)。20世纪50年代,早期人工智能研究者将神经网络用于模式识别,用计算机算法模拟神经元对输入信号的处理过程,并根据信号经过多层神经元后得到的输出结果对算法参数进行修正。

早期神经网络技术没有发展太久就陷入低谷。这主要有两个原因:一是当时的人工神经网络算法在处理某些特定问题时有先天局限,亟待理论突破;二是当时的计算机运算能力无法满足人工神经网络的需要。20世纪70年代到80年代,人工神经网络的理论难题得到解决。20世纪90年代开始,随着计算机运算能力的飞速发展,神经网络在人工智能领域重新变成研究热点。但直到2010年前后,支持深度神经网络的计算机集群才开始得到广泛应用,供深度学习系统训练使用的大规模数据集也越来越多。神经网络这一仿生学概念在人工智能的新一轮复兴中,真正扮演了至关重要的核心角色。

客观地说,神经网络到底在多大程度上精确反映了人类大脑的工作方式,这仍然存在争议。在仿生学的道路上,最本质的问题是,人类至今对大脑如何实现学习、记忆、归纳、推理等思维过程的机理还缺乏认识,况且,我们并不知道,到底要在哪一个层面(大脑各功能区相互作用的层面?细胞之间交换化学物质和电信号的层面?还是分子和原子运动的层面?)真实模拟人脑的运作,才能制造出可以匹敌人类智慧的智能机器。

定义三 AI就是与人类行为相似的计算机程序

和仿生学派强调对人脑的研究与模仿不同,实用主义者从不觉得人工智能的实现必须遵循什么规则或理论框架。“黑猫白猫,逮住耗子的就是好猫。”在人工智能的语境下,这句话可以被改成:“简单程序,复杂程序,聪明管用的就是好程序。”

也就是说,无论计算机以何种方式实现某一功能,只要该功能表现得与人在类似环境下的行为相似,就可以说,这个计算机程序拥有了在该领域内的人工智能。这一定义从近似于人类行为的最终结果出发,忽视达到这一结果的手段。另一种对人工智能的近似定义则更强调人工智能的实用色彩:AI就是可以解决问题并获得最大收益的计算机程序。