第一章 人工智能来了(第11/11页)
当然,机器目前的主流学习方法和人类的学习还存在很大的差别。举个最简单的例子:目前的计算机视觉系统在看过数百万张或更多自行车的照片后,很容易辨别出什么是自行车,什么不是自行车,这种需要大量训练照片的学习方式看上去还比较笨拙。反观人类,给一个三四岁的小孩子看一辆自行车之后,再见到哪怕外观完全不同的自行车,小孩子也十有八九能做出那是一辆自行车的判断。也就是说,人类的学习过程往往不需要大规模的训练数据。这一差别给人类带来的优势是全方位的。面对繁纷复杂的世界,人类可以用自己卓越的抽象能力,仅凭少数个例,就归纳出可以举一反三的规则、原理,甚至更高层次上的思维模式、哲学内涵等。最近,尽管研究者提出了迁移学习等新的解决方案,但从总体上说,计算机的学习水平还远远达不到人类的境界。
如果人工智能是一种会学习的机器,那未来需要着重提高的,就是让机器在学习时的抽象或归纳能力向人类看齐。
定义五 AI就是根据对环境的感知,做出合理的行动,并获得最大收益的计算机程序
针对人工智能,不同的定义将人们导向不同的研究或认知方向,不同的理解分别适用于不同的人群和语境。如果非要调和所有看上去合理的定义,我们得到的也许就只是一个全面但过于笼统、模糊的概念。
维基百科的人工智能词条采用的是斯图亚特·罗素(Stuart Russell)与彼得·诺维格(Peter Norvig)在《人工智能:一种现代的方法》25一书中的定义,他们认为:
人工智能是有关“智能主体(Intelligent agent)的研究与设计”的学问,而“智能主体是指一个可以观察周遭环境并做出行动以达致目标的系统”26。
基本上,这个定义将前面几个实用主义的定义都涵盖了进去,既强调人工智能可以根据环境感知做出主动反应,又强调人工智能所做出的反应必须达致目标,同时,不再强调人工智能对人类思维方式或人类总结的思维法则(逻辑学规律)的模仿。
以上,我们列举了五种常见的人工智能的定义。其中,第二种定义(与人类思考方式相似)特别不可取。人们对大脑工作机理的认识尚浅,而计算机走的是几乎完全不同的技术道路。正如深度学习“三巨头”之一的扬·勒丘恩(Yann Le Cun)所说,对深度神经网络,“我最不喜欢的描述是‘它像大脑一样工作’,我不喜欢人们这样说的原因是,虽然深度学习从生命的生物机理中获得灵感,但它与大脑的实际工作原理差别非常非常巨大。将它与大脑进行类比给它赋予了一些神奇的光环,这种描述是危险的。这将导致天花乱坠的宣传,大家在要求一些不切实际的事情。人工智能之前经历了几次寒冬就是因为人们要求了一些人工智能无法给予的东西”27。国内著名机器学习专家、南京大学教授周志华则说:“现在有很多媒体,常说深度学习是‘模拟人脑’,其实这个说法不太对。我们可以说从最早的神经网络受到一点点启发,但完全不能说是‘模拟人脑’之类的。”28
第一种定义(让人觉得不可思议)揭示的是大众看待人工智能的视角,直观易懂,但主观性太强,不利于科学讨论。第三种定义(与人类行为相似)是计算机科学界的主流观点,也是一种从实用主义出发,简洁、明了的定义,但缺乏周密的逻辑。第四种定义(会学习)反映的是机器学习特别是深度学习流行后,人工智能世界的技术趋势,虽失之狭隘,但最有时代精神。第五种定义(维基百科使用的综合定义)是学术界的教科书式定义,全面均衡,偏重实证。
基本上,偏重实证是近年来人工智能研究者的主流倾向。在今天这个结果至上的时代里,没有多少人愿意花心思推敲人工智能到底该如何定义。有那个时间,还不如去搞几个深度学习的新模型,发几篇深度学习新算法的论文来得划算。