第三章 人机大战:AI真的会挑战人类?(第12/15页)
计算机所使用的二进制数字、机器指令、程序代码等,其实都是人类对“计算”本身所做的抽象。基于这些抽象,人类成功地研制出如此众多且实用的人工智能技术。那么,AI能不能自己学会类似的抽象能力呢?就算把要求放低一些,计算机能不能像古人那样,用质朴却不乏创意的“一生二、二生三、三生万物”来抽象世界变化,或者用“白马非马”之类的思辨来探讨具象与抽象间的关系呢?
目前的深度学习技术,几乎都需要大量训练样本来让计算机完成学习过程。可人类,哪怕是小孩子要学习一个新知识时,通常只要两三个样本就可以了。这其中最重要的差别,也许就是抽象能力的不同。比如,一个小孩子看到第一辆汽车时,他的大脑中就会像《头脑特工队》的抽象工厂一样,将汽车抽象为一个盒子装在四个轮子上的组合,并将这个抽象后的构型印在脑子里。下次再看到外观差别很大的汽车时,小孩子仍可以毫不费力地认出那是一辆汽车。计算机就很难做到这一点,或者说,我们目前还不知道怎么教计算机做到这一点。人工智能界,少样本学习、无监督学习方向的科研工作,目前的进展还很有限。但是,不突破少样本、无监督的学习,我们也许就永远无法实现人类水平的人工智能。
知其然,也知其所以然
目前基于深度学习的人工智能技术,经验的成分比较多。输入大量数据后,机器自动调整参数,完成深度学习模型,在许多领域确实达到了非常不错的效果,但模型中的参数为什么如此设置,里面蕴含的更深层次的道理等,在很多情况下还较难解释。
拿谷歌的Alpha Go来说,它在下围棋时,追求的是每下一步后,自己的胜率(赢面)超过50%,这样就可以确保最终赢棋。但具体到每一步,为什么这样下胜率就更大,那样下胜率就较小,即便是开发Alpha Go程序的人,也只能给大家端出一大堆数据,告诉大家,看,这些数据就是计算机训练得到的结果,在当前局面下,走这里比走那里的胜率高百分之多少……
围棋专家当然可以用自己的经验,解释计算机所下的大多数棋。但围棋专家的习惯思路,比如实地与外势的关系,一个棋形是“厚”还是“薄”,是不是“愚形”,一步棋是否照顾了“大局”,等等,真的就是计算机在下棋时考虑的要点和次序吗?显然不是。人类专家的理论是成体系的、有内在逻辑的,但这个体系和逻辑却并不一定是计算机能简单理解的。
人通常追求“知其然,也知其所以然”,但目前的弱人工智能程序,大多都只要结果足够好就行了。
人类基于实验和科学观测结果建立与发展物理学的历程,是“知其然,也知其所以然”的最好体现。想一想中学时学过的“一轻一重两个铁球同时落地”,如果人类仅满足于知道不同重量的物体下落时加速度相同这一表面现象,那当然可以解决生活、工作中的实际问题,但无法建立起伟大、瑰丽的物理学大厦。只有从建立物体的运动定律开始,用数学公式表述力和质量、加速度之间的关系,到建立万有引力定律,将质量、万有引力常数、距离关联在一起,至此,我们的物理学才能比较完美地解释两个铁球同时落地这个再简单不过的现象。
而计算机呢?按照现在机器学习的实践方法,给计算机看一千万次两个铁球同时落地的视频,计算机就能像伽利略、牛顿、爱因斯坦所做的一样,建立起力学理论体系,达到“知其然,也知其所以然”的目标吗?显然不能。
几十年前,计算机就曾帮助人类证明过一些数学问题,比如著名的“地图四色着色问题”,今天的人工智能程序也在学习科学家如何进行量子力学实验79。但这与根据实验现象发现物理学定律还不是一个层级的事情。至少,目前我们还看不出计算机有成为数学家、物理学家的可能。
常识
人的常识,是个极其有趣,又往往只可意会、不可言传的东西。
仍拿物理现象来说,懂得力学定律,当然可以用符合逻辑的方式,全面理解这个世界。但人类似乎生来就具有另一种更加神奇的能力,即便不借助逻辑和理论知识,也能完成某些相当成功的决策或推理。深度学习大师约书亚·本吉奥举例说:“即使两岁孩童也能理解直观的物理过程,比如丢出的物体会下落。人类并不需要有意识地知道任何物理学就能预测这些物理过程。但机器做不到这一点。”80